Tuesday 3 October 2017

Exponential Gewichteter Gleitender Durchschnitt Risiko Metrik


Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also alpha (a) ein Gewichtungsfaktor ist (speziell eine 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngsten) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1 509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. GARCH and EWMA 21. Mai 2010 von David Harper, CFA, FRM, CIPM AIM: Vergleich, Kontrast und Berechnung parametrischer und nicht-parametrischer Ansätze zur Schätzung der bedingten Volatilität 8230 Inklusive : GARCH APPROACH Einschließlich: EXPONENTIAL SMOOTHING (EWMA) Exponentielle Glättung (bedingte parametrische) Moderne Methoden setzen mehr Gewicht auf aktuelle Informationen. Sowohl EWMA als auch GARCH legen mehr Wert auf aktuelle Informationen. Da EWMA ein Spezialfall von GARCH ist, verwenden sowohl EWMA als auch GARCH exponentielle Glättung. GARCH (p, q) und insbesondere GARCH (1, 1) GARCH (p, q) ist ein allgemeines autoregressives bedingtes heteroskedastisches Modell. Zu den wichtigsten Aspekten gehören: Autoregressive (AR). Tomorrow8217s Varianz (oder Volatilität) ist eine regressive Funktion von heute8217s variance8212it regresses auf sich Bedingte (C). Tomorrow8217s Varianz hängt8212is bedingt an8212die neueste Varianz. Eine bedingungslose Varianz hängt nicht von der heutigen Heteroskedastik (H) ab. Abweichungen sind nicht konstant, sie Fluß im Laufe der Zeit GARCH regresses auf 8220lagged8221 oder historische Begriffe. Die verzögerten Terme sind entweder Varianz - oder quadratische Renditen. Das generische GARCH (p, q) - Modell regressiert auf (p) quadratischen Renditen und (q) Varianzen. Daher rückt GARCH (1, 1) 8220lags8221 oder regressiert auf der quadrierten Rückkehr der letzten Periode8217s (d. h. nur 1 zurück) und der letzten Periode8217s-Varianz (d. h. nur 1 Varianz). GARCH (1, 1), die durch die folgende Gleichung gegeben ist. Die gleiche GARCH (1, 1) - Formel kann mit griechischen Parametern angegeben werden: Hull schreibt die gleiche GARCH-Gleichung wie folgt: Der erste Term (gVL) ist wichtig, da VL die Langzeit-Varianz ist. Daher ist (gVL) ein Produkt: es ist die gewichtete langfristige durchschnittliche Varianz. Das GARCH-Modell (1, 1) löst für die bedingte Varianz als Funktion von drei Variablen (vorherige Varianz, frühere Rückkehr2 und Langzeitvarianz): Persistenz ist ein in das GARCH-Modell eingebettetes Merkmal. Tipp: In den obigen Formeln ist die Persistenz (b ​​c) oder (alpha-1 beta). Persistenz bezieht sich darauf, wie schnell (oder langsam) die Varianz zurückkehrt oder 8220days8221 in Richtung zu seinem langfristigen Durchschnitt. Eine hohe Persistenz entspricht einem langsamen Verfall und einem langsamen Rückgang auf die mittlere8221 niedrige Persistenz entspricht einem schnellen Zerfall und einer schnellen 8220-Rückkehr zum Mittel.8221 Eine Persistenz von 1,0 impliziert keine mittlere Reversion. Eine Beharrlichkeit von weniger als 1,0 bedeutet 8220reversion des Mittelwerts, 8221, wo eine geringere Persistenz eine grßere Reversion des Mittels zur Folge hat. Tip: Wie oben ist die Summe der Gewichte, die der verzögerten Varianz und der verzögerten quadrierten Rendite zugeordnet sind, Persistenz (bc Persistenz). Eine hohe Persistenz (größer als null, aber kleiner als eins) impliziert eine langsame Reversion des Mittelwerts. Wenn jedoch die Gewichte, die der verzögerten Varianz und der verzögerten quadratischen Rückkehr zugewiesen sind, größer als eins sind, ist das Modell nicht stationär. Ist (bc) größer als 1 (wenn bc gt 1) ist das Modell nicht stationär und nach Hull instabil. In diesem Fall ist EWMA bevorzugt. Linda Allen sagt über GARCH (1, 1): GARCH ist sowohl 8220compact8221 (d. H. Relativ einfach) als auch bemerkenswert genau. GARCH-Modelle dominieren in der wissenschaftlichen Forschung. Viele Variationen der GARCH-Modell wurden versucht, aber nur wenige haben auf das Original verbessert. Der Nachteil des GARCH-Modells ist seine Nichtlinearität sic Beispiel: Lösung für Langzeitvarianz in GARCH (1,1) Betrachten wir die GARCH (1, 1) - Gleichung unten: Angenommen, der Alpha-Parameter 0.2, der Beta-Parameter 0.7, Und beachten Sie, dass Omega 0,2, aber don8217t Fehler Omega (0,2) für die langfristige Varianz Omega ist das Produkt von Gamma und die langfristige Varianz. Also, wenn Alpha-beta 0,9, dann muss gamma 0,1 sein. Da Omega 0,2 ist, wissen wir, dass die Langzeitvarianz 2,0 (0,2 184 0,1 2,0) betragen muss. GARCH (1,1): Der Notationsunterschied zwischen Hull und Allen EWMA ist ein Spezialfall von GARCH (1,1) und GARCH (1,1) ist ein verallgemeinerter Fall von EWMA. Der herausragende Unterschied ist, dass GARCH den zusätzlichen Begriff für mittlere Reversion enthält und EWMA fehlt eine mittlere Reversion. Wie wir aus GARCH (1,1) zu EWMA gelangen, lassen wir nun eine 0 und (bc) 1, so dass sich die obige Gleichung vereinfacht: Dies ist nun gleichbedeutend mit der Formel für den exponentiell gewichteten gleitenden Durchschnitt (EWMA): In EWMA bestimmt der Lambda-Parameter nun das 8220decay: 8221 ein Lambda, das nahe bei einem (hohen Lambda) liegt, zeigt einen langsamen Abfall. Der RiskMetricsTM-Ansatz RiskMetrics ist eine Markenform des exponentiell gewichteten gleitenden Durch - schnitts (EWMA) - Ansatzes: Das optimale (theoretische) Lambda variiert je nach Assetklasse, aber der insgesamt optimale Parameter, der von RiskMetrics verwendet wird, beträgt 0,94. In der Praxis verwendet RiskMetrics nur einen Zerfallsfaktor für alle Serien: 183 0,94 für tägliche Daten 183 0,97 für monatliche Daten (Monat definiert als 25 Handelstage) Technisch gesehen sind die täglichen und monatlichen Modelle inkonsistent. Allerdings sind sie beide einfach zu bedienen, sie angenähert das Verhalten der tatsächlichen Daten ganz gut, und sie sind robust, misspecification. Hinweis: GARCH (1, 1), EWMA und RiskMetrics sind jeweils parametrisch und rekursiv. (GARCH amp EWMA) Zusammenfassung Tipps: GARCH (1, 1) ist verallgemeinert RiskMetrics und umgekehrt RiskMetrics ist GARCH (1, 1) ist gegeben durch: Die drei Parameter sind Gewichte und müssen daher auf eins addieren: Tipp: Seien Sie vorsichtig mit dem ersten Begriff in der GARCH (1, 1) Gleichung: omega () gamma () (mittlere Langzeitvarianz). Wenn Sie nach der Varianz gefragt werden, müssen Sie eventuell das Gewicht aufteilen, um die durchschnittliche Varianz zu berechnen. Bestimmen Sie, wann und ob ein GARCH - oder EWMA-Modell in der Volatilitätsabschätzung verwendet werden sollte. In der Praxis sind die Varianzraten tendenziell mittlere Umkehrung, daher ist das GARCH (1, 1) - Modell theoretisch überlegen (8220 attraktiver als8221) an das EWMA-Modell. Denken Sie daran, dass8217s der große Unterschied: GARCH fügt den Parameter, der den langfristigen Durchschnitt gewichtet und daher enthält es mittlere Reversion. Tipp: GARCH (1, 1) ist bevorzugt, es sei denn, der erste Parameter ist negativ (was impliziert wird, wenn alpha beta gt 1). In diesem Fall ist GARCH (1,1) instabil und EWMA wird bevorzugt. Erklären Sie, wie die GARCH-Schätzungen Prognosen liefern können, die genauer sind. Der gleitende Durchschnitt berechnet die Varianz auf der Basis eines nachlaufenden Beobachtungsfensters, z. B. Die letzten zehn Tage, die letzten 100 Tage. Es gibt zwei Probleme mit dem gleitenden Durchschnitt (MA): Ghosting-Feature: Volatilitätsschocks (plötzliche Erhöhungen) werden abrupt in die MA-Metrik eingefügt und dann, wenn das hintere Fenster vorbeifährt, werden sie plötzlich aus der Berechnung fallen gelassen. Dadurch verschiebt sich die MA-Metrik in Abhängigkeit von der gewählten Fensterlänge. Trendinformationen werden nicht übernommen GARCH-Schätzungen verbessern diese Schwächen auf zweierlei Weise: Neuere Beobachtungen werden mit größeren Gewichten verknüpft. Dieses überwindet das Geisterbild, da ein Volatilitätsschock sofort die Schätzung beeinflusst, aber sein Einfluss wird allmählich im Laufe der Zeit vergehen. Ein Begriff wird hinzugefügt, um die Umkehrung des Mittels zu berücksichtigen. Erklären Sie, wie Persistenz mit der Reversion des Mittelwerts zusammenhängt. Die GARCH (1, 1) - Gleichung: Persistenz ist gegeben durch: GARCH (1, 1) ist instabil, wenn die Persistenz gt 1. Eine Persistenz von 1,0 gibt keine mittlere Reversion an. Eine geringe Persistenz (z. B. 0,6) zeigt einen schnellen Abfall und eine hohe Reversion gegenüber dem Mittel an. Tipp: GARCH (1, 1) hat drei Gewichte, die drei Faktoren zugeordnet sind. Persistenz ist die Summe der Gewichte, die sowohl der verzögerten Varianz als auch der verzögerten quadrierten Rendite zugeordnet sind. Das andere Gewicht ist der Langzeitvarianz zugeordnet. Wenn P-Persistenz und G-Gewicht einer Langzeitvarianz zugewiesen werden, dann PG 1. Wenn daher P (Persistenz) hoch ist, dann ist G (mittlere Reversion) niedrig: die anhaltende Reihe ist nicht stark, bedeutet sie zurückzukehren, zeigt 8220slow decay8221 in Richtung der bedeuten. Wenn P niedrig ist, dann muss G hoch sein: die widersprüchliche Reihe bedeutet stark rückgängig, zeigt 8220rapid decay8221 zum Mittelwert. Die durchschnittliche, unbedingte Varianz im GARCH (1, 1) - Modell ist gegeben durch: Erläutern Sie, wie EWMA systematisch ältere Daten vergisst und die RiskMetrics174 täglichen und monatlichen Zerfallsfaktoren identifiziert. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) ist gegeben durch: Die obige Formel ist eine rekursive Vereinfachung der EWMA-Reihe 8220true8221, die gegeben ist durch: In der EWMA-Reihe ist jedes Gewicht, das den quadrierten Renditen zugeordnet ist, ein konstantes Verhältnis des vorhergehenden Gewichts. Insbesondere ist Lambda (l) das Verhältnis zwischen benachbarten Gewichten. Auf diese Weise werden ältere Daten systematisch diskontiert. Der systematische Rabatt kann schrittweise (langsam) oder abrupt, abhängig von Lambda. Wenn Lambda hoch ist (z. B. 0,99), dann ist die Diskontierung sehr allmählich. Wenn Lambda niedrig ist (beispielsweise 0,7), ist die Diskontierung schlagartiger. Die RiskMetrics TM Zerfallsfaktoren: 0,94 für tägliche Daten 0,97 für monatliche Daten (Monat definiert als 25 Handelstage) Erklären Sie, warum Prognosekorrelationen wichtiger sein können als Prognosen von Volatilitäten. Bei der Messung des Portfoliorisikos können Korrelationen wichtiger sein als einzelne Volatilitätsvarianten der einzelnen Instrumente. Daher kann im Hinblick auf das Portfolio-Risiko eine Korrelationsprognose wichtiger sein als einzelne Volatilitätsprognosen. Verwenden Sie GARCH (1, 1), um die Volatilität zu prognostizieren Die erwartete zukünftige Varianzrate in (t) Perioden vorwärts ist gegeben durch: Beispielsweise wird angenommen, dass eine aktuelle Volatilitätsschätzung (Periode n) durch die folgenden GARCH (1, ) Gleichung: In diesem Beispiel ist alpha das Gewicht (0,1), das der vorherigen quadratischen Rückkehr zugewiesen wurde (die vorherige Rückkehr war 4), beta das Gewicht (0,7), das der vorherigen Varianz (0,0016) zugewiesen wurde. Was ist die erwartete zukünftige Volatilität, in zehn Tagen (n 10) First, für die langfristige Varianz zu lösen. Es ist nicht 0,00008 dieser Begriff ist das Produkt aus der Varianz und seinem Gewicht. Da das Gewicht 0,2 (1 - 0,1 - 0,7) betragen muss, beträgt die Langlaufvarianz 0,0004. Zweitens brauchen wir die aktuelle Varianz (Periode n). Das ist fast schon für uns oben: Jetzt können wir die Formel anwenden, um für die erwartete zukünftige Varianzrate zu lösen: Dies ist die erwartete Varianzrate, so dass die erwartete Volatilität etwa 2,24 beträgt. Beachten Sie, wie dies funktioniert: die aktuelle Volatilität beträgt etwa 3,69 und die langfristige Volatilität ist 2. Die 10-Tage-Forward-Projektion 8220fades8221 die aktuelle Rate näher an die langfristige Rate. Nichtparametrische Volatilitätsprognose

No comments:

Post a Comment